

Mark Scheme (Results)

Summer 2015

GCE Chemistry (6CH02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code US041078*
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
 - i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
 - ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
 - iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer. Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question	Correct Answer	Mark
Number	Correct Aliswei	Mark
1	D	1
Question Number	Correct Answer	Mark
2	В	1
Question Number	Correct Answer	Mark
3	С	1
Question Number	Correct Answer	Mark
4	С	1
	<u> </u>	
Question Number	Correct Answer	Mark
5	В	1
Question Number	Correct Answer	Mark
6	D	1
	,	
Question Number	Correct Answer	Mark
7	D	1
-	1 -	
Question Number	Correct Answer	Mark
8	A	1
Question Number	Correct Answer	Mark
9	В	1
	•	
Question Number	Correct Answer	Mark
10(a)	В	1
(b)	D	1
(c)	A	1
(d)	D	1
. , , ,		
Question Number	Correct Answer	Mark
11	D	1
	•	
Question Number	Correct Answer	Mark
12	A	1
_ · -	1 **	

Question	Correct Answer	Mark
Number		
13	С	1
Question	Correct Answer	Mark
Number		
14	С	1
Question	Correct Answer	Mark
Number		
15	D	1
Question	Correct Answer	Mark
Number		
16	A	1
Question	Correct Answer	Mark
Number		
17	С	1

Section B

Question Number	Acceptable Answers	Reject	Mark
18 (a)(i)	Ethanol dissolves silver nitrate / silver ions and halogenoalkanes OR	Ethanol is non- polar	1
	Ethanol (molecule) is polar and non-polar (solvent) OR Ethanol dissolves ionic and covalent	Just `ethanol dissolves halogenoalkanes'	
	compounds ALLOW Ethanol dissolves ionic and non-	Just 'water does not dissolve halogenoalkanes'	
	polar compounds Ethanol dissolves both types (of compound) So that the reactants can mix 'miscible' for 'dissolves'	Just 'they dissolve in ethanol'	
	IGNORE Any references to rate		

Question Number	Acceptable Answers	Reject	Mark
18(a)(ii)	To allow the temperature (of all the liquids) to equilibrate / to reach 50°C OR So that all the substances are at the same temperature ALLOW So that the temperature is constant		1

Question Number	Acceptable Answers	Reject	Mark
18(a)(iii)	Silver bromide IGNORE Formula even if incorrect (1		2
	$Ag^+ + Br^- \rightarrow AgBr$ (1) TE on incorrect silver halide	Non-ionic equations	
	ALLOW Ionic equations with uncancelled ion Ag ⁺ Br ⁻ as product	5	
	IGNORE state symbols even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
18(a)(iv)	Order: iodo, bromo, chloro ALLOW AgI, AgBr, AgCl OR I, Br, Cl OR		2
	Iodine, bromine, chlorine (1) C—I is the weakest bond OR I—is best leaving group	I ₂ , Br ₂ , Cl ₂ Rate depends on the reactivity of X / X ⁻	
	I is best leaving group ALLOW (if MP1 awarded) Rate depends on the strength of the C—X bond (1)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	IGNORE Explanations of the bond strengths, even if incorrect. References to bond length and atomic radius/size		
	ALLOW Reverse argument for MP2		

Question Number	Acceptable Answers		Reject	Mark
18(b)(i)	nucleophilic substitution Stand alone marks	(1) (1)	C 1	2
		(-)	S _N 1	

Question Number	Acceptable Answers	Reject	Mark
18(b)(ii)	Some comparison is required.		1
	Hydroxide ion /OH ⁻ is a stronger nucleophile (than water)	Use of NaOH/OH for OH ⁻	
	ALLOW OH ⁻ is a better electron pair donor (than water) Concentration of hydroxide ion / OH ⁻ is higher OR Hydroxide ion / OH ⁻ is charged More hydroxide ion / OH ⁻ in NaOH (than water)	Just 'NaOH/alkali forms OH ⁻ more readily'	
	IGNORE OH ⁻ is more basic / alkaline Alkali is a stronger nucleophile OH ⁻ is more reactive		
	ALLOW Reverse argument		

	I	I .	
Question Number	Acceptable Answers	Reject	Mark
18 (b)(iii)	Penalise omission of charge on hydroxide ion once only (in MP2) First mark HO H ₂ C Br CH ₂ -C ₃ H ₇ + Br HO Both curly arrows First curly arrow from any part of the hydroxide ion (or the charge) to the carbon atom Second curly arrow from the C—Br bond to the bromine atom or just beyond (1)		3
	Lone pair on oxygen of OH^- {HO:} (1) Third mark Partial charge on C—Br bond { $C^{\delta+}$ —Br $^{\delta-}$ } (1) ALLOW Correct S_N1 mechanism for full marks Curly arrow from hydroxide group from any part of the group including the charge. IGNORE transition state (even if incorrect) products (even if incorrect)	OH with no / partial charge C ⁺ —Br	

Question Number	Acceptable Answers	Reject	Mark
18(b)(iv)	PCl ₅ : misty /steamy /white fumes/gas IGNORE Tests on product (e.g. turns blue litmus red) (1) $K_2Cr_2O_7$: orange solution turns green ALLOW Orange to blue (1)	smoke Just 'fumes'/ 'effervescence'	3
	$K_2Cr_2O_7$ preferred because PCl_5 reacts with water (as well as alcohols) ALLOW $K_2Cr_2O_7$ preferred because PCl_5 reacts with alkali / OH^- / OH (1) IGNORE References to primary, secondary and tertiary alcohols	PCl₅ reacts with carboxylic acids	

Question Number	Acceptable Answers			Reject	Mark
18(c)	Skeletal formula	Classification			3
	Br——	Primary/1°		Just the classificat ions	
	Br——	Secondary/2°			
	Br——	Tertiary/3°			
	Look at the structura three structures corr two structures correc	ect scores 2 ma			
	If all three structures then all three classif				
	Penalise displayed, p structural formulae o IGNORE Bond angles and nan	once only	ed or		
L	Dona angles and han		r Ougation	. 10 10 "	

Total for Question 18 = 18 marks

Question Number	Acceptable Answers	Reject	Mark
19(a)(i)	Add hydrochloric acid / $HCI(aq)$ / $nitric$ acid / $HNO_3(aq)$ ALLOW Just 'acid' only if a suitable acid is given in equation one Sulfuric acid / $H_2SO_4((aq))$ or HCI (1)	Just 'acid' OR heating the carbonate	2
	IGNORE 'conc'		
	Gas / carbon dioxide / CO ₂ evolved turns lime water milky / cloudy / produces a white precipitate (1)		
	MP2 is a stand alone mark but there must be some indication that a gas is being tested		

Question Number	Acceptable Answers	Reject	Mark
19(a)(ii)	ALLOW $H_2CO_3(aq)$ for $H_2O(I) + CO_2(g)$		3
	$BaCO_3(s) + 2HCI(aq)$ $\rightarrow BaCI_2(aq) + H_2O(I) + CO_2(g)$ OR		
	BaCO ₃ (s) + 2HNO ₃ (aq) \rightarrow Ba(NO ₃) ₂ (aq) + H ₂ O(I) + CO ₂ (g)		
	OR $CO_3^{2-}(s) + 2H^+(aq) \rightarrow H_2O(1) + CO_2(g)$		
	ALLOW BaCO ₃ (s) + H ₂ SO ₄ (aq) \rightarrow BaSO ₄ (s/aq) + H ₂ O(I) + CO ₂ (g)		
	OR		
	$BaCO_3(s) \rightarrow BaO(s) + CO_2(g)$ (1)		
	$Ca(OH)_2(aq) + CO_2(g) \rightarrow CaCO_3(s) + H_2O(l) (1)$		
	All state symbols in both equations correct (1)		
	ALLOW State symbols mark if first equation not balanced but ALL species are correct. No TE on other equations		

Question Number	Acceptable Answers		Reject	Mark
19(b)(i)	MP1 and MP2 Dip (clean) nichrome / platinum wire ALLOW loop / rod for wire OR Silica rod	(1)	Nickel / chrome / chromium spatula	3
	in hydrochloric acid / HCl(aq) ALLOW any mention of HCl(aq) e.g. cleaning or mixing solid and acid HCl for HCl(aq) ALLOW (for MP1 and MP2) (Wooden) splint	(1) (1)	Other acids	
	Soaked in distilled / deionised water MP3 then dipped in solid and placed in (hot / roaring / blue-cone) (Bunsen) flame ALLOW On / over / under / above for 'in' IGNORE inoculating / flame-test (wire)	(1)	just `water'	

Question Number	Acceptable Answers		Reject	Mark
19(b)(ii)	$A = Mg^{2+} $ (1) $B = Ca^{2+} $ (1)	-		2
	Penalise omission of ²⁺ only once Correct ions with correct charge but the wrong way round scores 1 mark Correct ions with incorrect / no charge scores 1			
	IGNORE Names / compounds			

Question Number	Acceptable Answers	Reject	Mark
19(b)*(iii)	Read the whole answer before awarding marks. If no mention of electrons only MP3 may be awarded.		3
	Electrons promoted to higher energy level (by thermal energy / heat from (Bunsen) flame) (1)	Just 'electrons promoted/ excited'	
	(Promoted) electrons fall / drop / relax to lower energy level / orbital / shell / subshell OR Electrons return to ground state (1)	Just 'energy lost'	
	Emitting radiation / light / photons (in the visible region) (1)	Just 'energy given out	
	IGNORE Colour		

Question Number	Acceptable Answers	Reject	Mark
19(b)(iv)	Emitted radiation is not in the visible region (of the spectrum) ALLOW Emitted radiation is in IR / UV		1

Question Number	Acceptable Answers	Reject	Mark
19(c)	As group is descended		3
	First mark (metal ion size) (Metal) ion radius increases / has more (electron) shells (but charge remains the same) OR Charge density of metal ion decreases ALLOW	Just "metal"	
	(Metal) atomic radius increases / has more (electron) shells (1)		
	Second mark (polarizing species) Polarizing (ALLOW distorting) power of cation / metal ion decreases (1)	Just 'ion'	
	Third mark (polarized species) Polarization / distortion of (electron cloud of) carbonate ion /anion decreases	Just 'ion or bond'	
	ALLOW C-O / C=O for carbonate ion (1)		
	(so carbonate more stable to heat)		
	ALLOW reverse argument for ascent of the group.		

Total for Question 19 = 17 marks

Question Number	Acceptable Answers	Reject	Mark
20(a)	Methane undergoes more complete combustion / produces less CO OR Burning methane emits no (allow less) soot / carbon particles / particulates OR Burning methane emits no (allow less) sulfur / sulfur oxides OR Sulfur compounds are much more easily removed from methane OR Methane produces less CO ₂ per unit of energy than coal ALLOW Any of these points reversed for coal IGNORE 'less CO ₂ / greenhouse gases' 'carbon footprint' and 'emissions'		1

Question Number	Acceptable Answers		Reject	Mark
20(b)	Any mention of the ozone layer scores zero			2
	(A greenhouse gas) absorbs & re emits / absorbs / traps / reflects	-	UV absorbed etc	
	IR (radiation) / heat	(1)	Absorbs from the sun	
	(re-radiating) from the Earth		Suit	
	ALLOW Back to the Earth	(1)		

Question Number	Acceptable Answers	Reject	Mark
20(c)	Methane (molecule) absorbs IR radiation more effectively (because it has more IR active vibrations) OR Methane has a longer life in the atmosphere ALLOW Methane (molecule) absorbs more (IR) radiation OR Methane has more (vibrating polar) bonds OR Methane has 4 (polar) bonds (rather than 2)	C—H more polar than C=O	1

Total for Question 20 = 4 marks
Total for Section B = 39 marks

Section C

Question Number	Acceptable Answers	Reject	Mark
21(a)	Chlorine / Cl ₂ / same species / element / atom is oxidized and reduced (in the same reaction) (1) Chlorine oxidized from 0 to +1 in HOCl		3
	$/OCI^-/chlorate(I)$ (1) Chlorine reduced from 0 to -1 in HCl / $CI^-/chloride$ (1) If oxidized and /or reduced omitted or the		
	wrong way round, max 1 (out of final 2 marks)		

Question Number	Acceptable Answers	Reject	Mark
21(b)(i)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		2
	Two bonding pairs (1) Five non-bonding electron pairs (1)		
	IGNORE Lines representing bonds		
	ALLOW Bonding pairs on the same horizontal line		
	Different symbols for electrons max 1		

Question Number	Acceptable Answers		Reject	Mark
21(b)*(ii)	No TE on incorrect structure in b(i) Penalise omission of "pairs" once only First mark			5
	Bond angle = 104.5° ALLOW 102°—106°	(1)		
	Second mark 2 bond pairs and 2 lone pairs (of electrons valence shell of the oxygen atom) (1)	s in		
	Third & fourth marks (stand alone) (valence) electron pairs at minimum repulsion ALLOW maximum separation / distance approximation / distance / di	oart (1)	'Bonds' for 'electron pairs'	
	lone pair repulsion > bond pair repulsion	(1)		
	Fifth mark So tetrahedral bond angle reduced ALLOW			
	109° / 109.5° /109° 28' (angle) reduced	(1)		

Question Number	Acceptable Answers	Reject	Mark
21c(i)	Amount of $S_2O_3^{2-} = 9.65 \times 0.00550 \div 1000 *$ (= 5.3075 x 10 ⁻⁵ mol) (1)		3
	Amount of Cl_2 (in 1 dm ³) = 0.5 x * = 0.5 x 9.65 x 0.00550 \div 1000 ** (= 2.65375 x 10 ⁻⁵ mol) (1)		
	Mass of Cl_2 (in 1 dm ³) = 71 x 1000 x ** = 1.8842 (mg dm ⁻³) (1) (so within limits)	Incorrect units	
	ALLOW 1.8842x10 ⁻³ g dm ⁻³ and so within limits		
	An answer lower than 1 or higher than 2 mg dm ⁻³ only scores a TE mark if there is a comment relating to the limits		
	Correct answer with no working scores 1 Ignore SF except 1 SF		
	Note If 0.5 omitted in MP2 and 35.5 used in MP3 then final answer is numerically correct; this scores only MP1		

Question Number	Acceptable Answers	Reject	Mark
21c(ii)	Concentration of chlorine might be different in different parts of the pool / at different times OR Sample size small in relation to pool volume IGNORE Just 'sample size is small' References to experimental uncertainty		1

Question Number	Acceptable Answers	Reject	Mark
21d(i)	2HOCl → 2HCl + O ₂ OR		1
	HOCl → HCl + ½O ₂ OR Other multiples		
	ALLOW HCIO or H ⁺ + CIO ⁻ for HOCI		

Question Number	Acceptable Answers	Reject	Mark
21d(ii)	London forces / dispersion forces / induced dipole- induced dipole attractions (ALLOW van der Waals / vdw forces) (1) Stronger because bromine (molecule) has more electrons / electron shells ALLOW greater surface area 'more' for 'stronger' (1)	dipole-dipole forces	2

Question Number	Acceptable Answers	Reject	Mark
Number 21e(i)	All three marks are stand alone Lowering pH increases [H ⁺] OR Increasing pH reduces [H ⁺] ALLOW More/less H ⁺ IGNORE	Just repeating information from	3
	More acidic/alkaline (1) Lowering pH / increased [H ⁺] shifts equilibrium to the left (so [HOBr] increases) (1) Increasing pH / reduced [H ⁺] shifts equilibrium to the right (so [OBr ⁻] increases) (1) Explanations must refer to equilibrium, but this may be implied	the table	

Question Number	Acceptable Answers	Reject	Mark
21e(ii)	Alkaline solutions are irritant (to the eyes) ALLOW caustic / corrosive saponifies / burns skin / chemical burns stings eyes IGNORE	toxic	1
	Harmful		

Total for Question 21 = 21 marks Total for Section C = 21 marks

